The Soluble Guanylate Cyclase Stimulator IWP-953 Increases Conventional Outflow Facility in Mouse Eyes
نویسندگان
چکیده
PURPOSE The nitric oxide (NO)-cyclic guanosine-3',5'-monophosphate (cGMP) pathway regulates aqueous humor outflow and therefore, intraocular pressure. We investigated the pharmacologic effects of the soluble guanylate cyclase (sGC) stimulator IWP-953 on primary human trabecular meshwork (HTM) cells and conventional outflow facility in mouse eyes. METHODS Cyclic GMP levels were determined in vitro in HEK-293 cells and four HTM cell strains (HTM120/HTM123: predominantly myofibroblast-like phenotype, HTM130/HTM141: predominantly endothelial-like phenotype), and in HTM cell culture supernatants. Conventional outflow facility was measured following intracameral injection of IWP-953 or DETA-NO using a computerized pressure-controlled perfusion system in enucleated mouse eyes ex vivo. RESULTS IWP-953 markedly stimulated cGMP production in HEK-293 cells in the presence and absence of DETA-NO (half maximal effective concentrations: 17 nM, 9.5 μM). Similarly, IWP-953 stimulated cGMP production in myofibroblast-like HTM120 and HTM123 cells, an effect that was greatly amplified by the presence of DETA-NO. In contrast, IWP-953 stimulation of cGMP production in endothelial-like HTM130 and HTM141 cells was observed, but was markedly less prominent than in HTM120 and HTM123 cells. Notably, cGMP was found in all HTM culture supernatants, following IWP-953/DETA-NO stimulation. In paired enucleated mouse eyes, IWP-953 at 10, 30, 60, and 100 μM concentration-dependently increased outflow facility. This effect (89.5%) was maximal at 100 μM (P = 0.002) and in magnitude comparable to DETA-NO at 100 μM (97.5% increase, P = 0.030). CONCLUSIONS These data indicate that IWP-953, via modulation of the sGC-cGMP pathway, increases aqueous outflow facility in mouse eyes, suggesting therapeutic potential for sGC stimulators as novel ocular hypotensive drugs.
منابع مشابه
Characterization of soluble guanylate cyclase in NO-induced increases in aqueous humor outflow facility and in the trabecular meshwork.
PURPOSE Nitric oxide (NO) increases the rate at which aqueous humor exits the eye; however, the involvement of soluble guanylate cyclase (sGC) is unknown. This study investigated the role of sGC in mediating the NO-induced increases in outflow facility. METHODS Outflow facility was measured in porcine eyes using the anterior segment organ culture perfusion system. sGC activity was assessed by...
متن کاملNO-induced regulation of human trabecular meshwork cell volume and aqueous humor outflow facility involve the BKCa ion channel.
Nitric oxide (NO) donors decrease intraocular pressure (IOP) by increasing aqueous outflow facility in the trabecular meshwork (TM) and/or Schlemm's canal. However, the cellular mechanisms are unknown. Cellular mechanisms known to regulate outflow facility include changes in cell volume and cellular contractility. In this study, we investigated the effects of NO donors on outflow facility and N...
متن کاملRiociguat: PATENT-1 Study
Stimulators of soluble guanylate cyclase (sCG) are novel pharmacological agents that directly stimulate sGC. Ongoing research on sGC stimulators led to the development of the more potent and more specific sGC stimulator, riociguat. Recently, the US Food and Drug Administration has approved riociguat to treat pulmonary arterial hypertension in adults. Support for the approval of riociguat comes ...
متن کاملRiociguat, a soluble guanylate cyclase stimulator, ameliorates right ventricular contraction in pulmonary arterial hypertension
Riociguat is a soluble guanylate cyclase stimulator used for pulmonary hypertension (PH) treatment. We evaluated right ventricular (RV) contractile function in 27 PH patients receiving riociguat. A comparison of pre- and post-administration echocardiographic studies demonstrated significantly improved RV strain after riociguat treatment, even after adjusting for RV afterload.
متن کاملExpression and function of soluble guanylate cyclase in pulmonary arterial hypertension.
Alterations of the nitric oxide receptor, soluble guanylate cyclase (sGC) may contribute to the pathophysiology of pulmonary arterial hypertension (PAH). In the present study, the expression of sGC in explanted lung tissue of PAH patients was studied and the effects of the sGC stimulator BAY 63-2521 on enzyme activity, and haemodynamics and vascular remodelling were investigated in two independ...
متن کامل